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Abetract-The effects of blowing and suction on free convection boundary layers on bodies of general 
shape are considered. A numerical solution is obtained for a horizontal circular cylinder with both 
constant blowing and suction. The particular body shapes and transpiration velocities which enable a 
similarity solution of the boundary-layer equations to be found are given. The asymptotic solutions 
both strong blowing and suction are derived and it is found that there is good agreement with the 

numerical solutions. 

NOMENCLATURE 

co-ordinate measuring distance along body; 
co-ordinate measuring distance normal to 
body; 

transpiration velocity; 

typical length scale of the body; 
acceleration of gravity; 

temperature of fluid; 
ambient temperature; 
temperature of body; 
= T,-TO; 

angle made by outward normal with 
downward vertical; 
= since; 

non-dimensional variation in transpiration 
velocity; 

kinematic viscosity; 

stream function; 
transpiration parameter; 
Prandtl number; 

heat-transfer parameters; 

7w 7l, skin friction parameters; 

Gr, Grashof number; 

B> coefficient of thermal expansion, 

1. INTRODUCTION 

PREVIOUS work on the effects of suction and blowing 

on free convection boundary layers has been confined 
almost entirely to the case of a heated vertical plate. 
Eichhorn [l] considered the power law variations in 
plate temperature and transpiration velocity which 
enable a similarity solution of the boundary-layer 
equations to be found. Sparrow and Cess [2] discussed 
the case of constant plate temperature and transpira- 
tion velocity. They obtained series expansions for 

temperature and velocity in powers of x1/4, x being the 

co-ordinate measuring distance from the leading edge. 
Merkin [3] extended this problem by obtaining 
asymptotic expansions, i.e. as x -+ co, for temperature 

and velocity in the cases both of blowing and suction. 
The series expansions for small x given in [2] were 
then joined to the asymptotic solution by a numerical 

solution of the boundary-layer equations. 
In a recent paper, Clarke [4] extended the problem 

discussed in [I] by obtaining the next approximation 
to the solution of the full Navier-Stokes equations for 
large, but finite, Grashof number. In [4] the density 
variations were included in full, whereas in [l-3] the 

density variations were assumed important only in 
producing the buoyancy force. 

The only paper not limiting attention to a flat plate 

is by Aroesty and Cole [5]. They considered the case of 
strong blowing through a body of general shape, and 
obtained the first approximation in the inner inviscid 

region, but did not extend it any further, or discuss 
the form of the outer region which is needed so that 
the ambient conditions can be attained by the fluid. 

The purpose of this paper is to consider the effects 
that blowing and suction have on free convection 

boundary layers on bodies of general shape. A general 
transpiration velocity is considered and attention is 
limited to two-dimensional flows. The forms of body 
shape and transpiration velocity which enable a 
similarity solution of the equations to be obtained is 
discussed. A method of solving the full boundary-layer 
equations numerically is considered and results given 
for a horizontal circular cylinder with constant trans- 
piration velocity. Solutions are then obtained for large 
values of a transpiration parameter c. For the case 
of suction, series expansions for velocity and tempera- 
ture are obtained in powers of c-4, while for blowing 
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the expansions are in powers of E- ‘. A comparison of 
the exact values obtained from the numerical solution 
with those obtained from the asymptotic series gives 
good agreement even for moderate values of E. This 
suggests that the asymptotic series would be useful to 
describe the flow in cases other than those for which 
numerical solutions have been obtained. 

equations (1) and (2) become 

F”‘+tif(Fr~)F’‘-/IF” = 0 

2. EQUATIONS OF MOTION 

The co-ordinate system used is such that X measures 
distance along the surface of the body, the lowest point 

being the origin X = 0, and Y measures distance 
normally outwards. With the assumption that imposed 
temperature differences are small, viscous dissipation 

can be neglected and changes in density are important 
only in producing the buoyancy force. The boundary- 

layer equations are as given in, for example, [3] except 

that the transverse component of the buoyancy force is 
gp(T-- T,)sina, where J is the angle made by the 
outward normal with the downward vertical. The trans- 

piration velocity on the body is + l+(x), where the 
upper sign is taken throughout for blowing and the 

lower sign for suction, and y(x) is non-dimensional. 
The continuity equation enables a stream function 9’ 

to be used and defining non-dimensional variables 
x = X/l, y = Gr”4Y/l, Y = ~Gr’/~$(x,y) and T-T0 = 
ATTO(x, y), where I is a typical length scale of the body 
and Gr = gflAT13/v2 is the Grashof number, the 

boundary-layer equations become 

a”* a* a’* aI) a’* 
3 + S(x)0 + ~ 1 - - ~ = 

dY ax (:y ay axay 
o 

(1) 

!fi_~g+W~=, 
rs ay2 ay 8.x ax ay 

with boundary conditions 

(4 

H= 1, 
ai a* 
~ = 0, z = FEY(X) on y = 0 (3) 
(1y 

e-+0, ?-+O as JI--+ zoo. 
?y 

E = Re/Gr1’4, where Re = I/,1/v is the Reynolds number 
of the applied transpiration flow, and 0 is the Prandtl 
number. 

IfS(x) = [(2-/9x] (3fl-2)1(2-fl) then it has been shown 

by [S] that equations (1) and (2) have a similarity 
solution without transpiration, where /I must be in the 
range 3 < fl c 2. If transpiration effects are included a 
similarity solution is still possible provided y(x) = 
[(~-P)x](“-~)/(~-“). Defining 

$ = ~cjy(x)dx+[(2-~)~]“(~-“‘F(~~), 8 = 0(r/,) 

where 

(4) 

with 

O”fa(FT~)fl’= 0 (5) 

F(0) = F’(0) = 0, Q(0) = 1 

F’-+O, &+O as yak -+ co. 
(6) 

(Dashes denote differentiation with respect to vi.) 
The case fl = 1 gives the only body shape for which a 

similarity solution is possible with a constant transpira- 

tion velocity. In this case S(x) = x and F(qi) and f3(~,) 
are the initial profiles for the constant transpiration 
flow on a general body with a rounded lower end. The 
semi-infinite flat plate is given by b = 3, and the solution 
of the equations in this case have been given by [l] and 
[4]. Graphs of Q’ = -s-r@‘(O) and T: = S”(O) for 

fl= 1 and c = 1 are given in Figs. 1 and 2 for suction 
and blowing respectively. 

FIG. 1. Heat transfer Q’ and skin friction T:,, for suction, 
D=l.--- exact values, ---values from asymptotic 

expansion. 

FIG. 2. Heat transfer Q’ and skin friction z:, for blowing, 
P=l.--- exact values, - - -values from asymptotic 

expansion. 
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Equations (1) and (2) have been solved numerically 
for a constant transpiration velocity for a horizontal 
circular cylinder, in which case S(x) = sinx. The 
method of solution is similar to that described in [3] 
for a flat plate. In [3] the equations were first trans- 
formed using a transformation appropriate for a body 
with a sharp leading edge, and then these equations 
were solved numerically. This transformation is not 
suitablefor a body with a rounded lower end, for which 
S(u)/\- --+ I as Y -+ I). The transformation appropriate in 
this case is 
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ing each step in first one and then two integrations 
and insisting that the difference between the two solu- 
tions was less than 09005. Errors from using finite 
differences in the y-direction were reduced by doing 
each calculation twice, first with a step length of h and 
then with a step length of 2h. Since the finite difference 
scheme gives errors of 0(/z’), the Richardson h2 extra- 
polation was used to improve the results. This method 
is fully described in [6]. For suction h = @I and for 
blowing h = 0.2 were used. The outer boundary condi- 
tions were taken at a finite value of ): = ya, and y= 
had to be varied from 7 to 10 for suction, and from 20 
to 28 for blowing. 

and then the resulting equations are solved for $r and B. 
To do this, derivatives in the x-direction are replaced 
by differences and all other quantities averaged. The 
two non-linear ordinary differential equations which 
result are solved by writing them in finite difference 
form and solving the algebraic equations iteratively 
by a Newtonian-Raphson process. The numerical 
solution starts at x = 0 where the initial profiles are 
given by equations (4) and (5) with /I = 1 and proceeds 
round the cylinder to x = n. Errors from using finite 
differences in the x-direction were kept small by cover- 

We can define a skin friction parameter r,, and a 
heat-transfer parameter Q by 

and 

Q = - V,AT 3Y o 
L(F) : -f(g)” 

Values of rCo and Q for suction and blowing for 
various values of E and c = 1 are given in Tables 1 
and 2. 

Table 1. Values of skin friction parameter T,., and heat-transfer parameter Q for suction 

x 

0 0 I.4606 0 1.1160 0 
@5 0.1928 1.4502 0.3416 1.1107 0.4567 
1.0 0.3542 1.4184 0.6233 1.0957 @8094 
1.5 0.4566 1.3640 0.7934 1.0700 0.9863 
2.0 0.4801 1.2838 0.8146 1.0320 0.92 19 
2.5 0.4122 1.1689 0.6658 o9764 0.6393 
3.0 0.24 18 0.9838 0.3280 0.8758 0.1526 
7L 0.1619 0.8955 0.1810 0.8100 0~0000 

x 

0 
05 
1.0 
1.5 
2.0 
2.5 
3.0 
71 

t: = 0.5 E=l E=2 E = 2 (series) 

Tc.1 Q Q Q Q 

1.0169 0 I.0136 
1.0158 0.457 1 1.0126 
1.0119 O-81 14 l-0093 
1.0060 0.9850 1.003 1 
0.9985 0.9288 0.9948 
09872 0.6318 0.9869 
0.9852 01517 0.9826 
0.9849 0~0000 0.9823 

Table 2. Values of skin friction parameter r<,, and heat-transfer parameter Q for blowing 

c = 2 (series) 

0 0.4602 0 0.0769 0 ONI 0 
0.1880 0.4004 03314 00749 0.4547 00017 0.4531 
@3435 @3799 0.5999 0.069 1 O-8078 0.0014 0.8131 
0.4379 0.3458 0.7517 0.0598 0.9766 0~0010 0.993 1 
0.4509 0.2997 0.7496 00471 0.9145 00006 0.9329 
03707 0.2340 0.5765 0.03 18 0.6223 00002 06284 
0.1875 01461 0.2443 0.0146 0.1526 @OOOl O-1499 
0.1380 0.1253 0.0882 0.0075 0MKul 0~0000 @0000 
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3. ASYMPTOTIC EXPANSION-SUCTION 

To obtain a solution of equations (1) and (2) which 
will hold for large E, new variables are defined by 

where n = syy. On substituting into equations (1) and 

(2) an expansion forfand 0 of the form 

+a-” 
( 

=%io(9)+$;;(1,,(4) +... 
y5 dx > 

is suggested. On solving the resulting ordinary differen- 
tial equations 

H,(q) = KU” 

fo(rl) = (o-1)$-e-““-ae-‘I 
p> (0 # 1) 

r?(a - 1) 

or 1 -e-“-qe-“, (0 = 1) 

/l,,(q) = 3ewaq ( 2cz+2u+ 1 
‘1 - 

(7 2cT(o+ 1) > 

3e-“” u ( e - o,, 

+(a id”-pj 
= 3em'f(q-$+fe-2"(~+~) (u 

= -3~,o(d 

(a# 1) 

= 1) 

x (emo’l 
+6_l)+(305-3~4+3rr3-&a+3) 

04(a- 1)2(a+ 1)s 

x (e-” +@,I+.) - (e-*‘I+ 1) 

4cZ(cr - I)* 

(30- 1) 

- 8a4(2a-l)(rT-1)2 
(eK2”“+20- 1) 

_ (2004+107~3-8~‘-470+12)e_,, (~z 1) 

4rJ4(a-- l)(a+ 1)2(2c- 1) 

47 
=E- 

( 
4+:9+3q2 e-” 

> 

( 17 5 
+ 

‘12 
z-%)1+4 e-21f (0~1) 

> 

fil@/) = (2c2-4c-5) 
2cr4(o+ 1)(0-l) 

(e ~~‘l_.e-‘l+a-l) 

I 

+ 8a4(a-1)(20--l) 
(e-2d’i-2ae-ff+20-1) 

(a4+crZ-1) 

- a4(a+ H3(0- 1) 
(e-(‘+d)‘i-(l +c)e-“+o) 

+ r(e-‘i-e-w) 

c?(cJ- 1) 
(of 1) 

= 
( 

$+$+; e-” 
! 

- r! 
( ) 

39 
8f{ e-2’I-z (a = I). 

From the above solution it follows that asymptotic 
series for Q and T,., are 

Q=y[~+~(~=$)+...j (8) 
2a(a + 1) y4 dx 

s 1 

[ 

E -4 
r,, = - 

y a + 4rr3(a + 1)2 

x (9) 

The solution for the equations of O(s-‘) has been 
found in a way similar to that above, but this time 
four sets of equations have to be solved. The process 

is straightforward but the algebraic manipulation is 
very involved. The results are very long and will not 
be given in order to save space. 

Using the forms for S(x) and y(x) necessary for a 
similarity solution, it follows that 

(10) * 
E-4 

-----+ 
Q =“+2r7(cr+1) 

1 
z:, = - - & -,2(0+l)b+(7~‘+5) + ,,,, 

a 4cr3(a+ 1)2 
(11) 

Values of Q and rc, obtained from (8) and (9) for a 
circular cylinder are given in Table 1 for E = 2 and 
c = 1, and there is good agreement with the exact 
values found from the numerical solution. This good 
agreement was also seen in a comparison ofvelocity and 
temperature profiles. 

Values of Q’ and 7f obtained from (10) and (11) for 
/I = 1 and a = 1 are plotted on Fig. 1. The series solu- 
tion differs from the exact value by less than 10 per cent 
when E = 1 for Q’ and when E = 15 for T:,, 

It seems reasonable to conclude that the series 
expansions will be useful in giving a good approxima- 
tion to velocity and temperature profiles for a general 
body shape and suction velocity for F, > 2. 

4. ASYMPTOTIC EXPANSION--BLOWING 

For strong blowing the boundary layer is made up of 
two regions. There is an inner region of thickness O(E) 
in which viscous effects are negligible, made up of fluid 
that has been blown out through the body. This region 
extends from the body up to the “dividing streamline” 
which is the streamline that emerged from the body at 

x = 0. Since the ambient conditions are not attained by 
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the fluid on the “dividing streamline”, there must be an 
outer region, centred round the “dividing streamline” 
at the outer edge of which the ambient conditions are 
attained, and which must merge with the inner solution. 
This outer region has thickness O(1) and in it viscous 
effects are important. 

To obtain the solution in the inner region, equations 
(1) and (2) are first transformed by putting $ = E+ and 
< = E- ‘y. This transformation is suggested by the fact 
that the inner region has thickness O(E) and is inviscid 
to a first approximation. Then, instead of (C&O), (u,@) 
are used as new dependent variables, where u = @/a<, 
and instead of (x, 0, (x, 5) are used as new independent 
variables. 5 is defined to be the point on the body where 
the streamline 4 = constant emerged. C$ is related to 5 
by d4 = -y(l) dt. 5 = x is the equation of the body and 
the equation of the “dividing streamline” is 5 = 0. 

The form of the transformed equations suggests an 
expansion of the form 

From (16) it follows that the term of O(ce2) does not 
contribute to TV, so to get the next approximation the 
term of O(E-~) has to be considered. It follows that 

u,(x,<)= -Sd S (x-t)+...nearl=x 
0 uoy3 d5 Y 

so that 

rCO=;[l -$-$(;)+...]. (17) 

Values of z, obtained from (17) for the case of a circular 
cylinder with constant blowing are given in Table 2 for 
E = 2. There is good agreement with the exact values, 
the difference being less than 3 per cent. 

[ is related to the (x, 5) variables by 

u = UO(X,5)+E-2U~(X,5)+E-4U2(X,5)+ . . . 
8 = e,(x,5)+e-2e,(x,r)+&-482(X,5)+ . . . . (12) Theinner solution holds in the region between the body 

The equation for Q0 is d&,/ax = 0, and since B0 = 1 on 
and the “dividing streamline” which is given by 5 = 0. 

the body 0,(x, 5) = 1. Equating terms of O(E-~) gives 
If [ = co(x) is the equation of the “dividing streamline” 

LWr/dx = 0, and since 0r = 0 on the body Bi(x, 5) G 0. 
then 

Proceeding inductively, it is easy to see that /3,(x, l) = 0 

s 

’ 
for n >, 1. So that in the inner layer we have L(x) = 

r(r) dr 
ou(x,t). 

0(x,<) = 1. 

The solution for u,, is 

(13) 
Since the solution in the outer region must merge with 
theinner region solution near the “dividing streamline” 

(14) 
we need to know the behaviour of C$ near 5 = 0. From 
(12) and using the behaviour of a0 and ur for small 5 

which agrees with the result given in [5]. The solution 
of the equation obtained by equating terms of O(E- 2, is 

C=i~-[+$$+$]ir-Br~+... (18) 

From (14) it follows that u. = 2r12S(x)(x -#‘2 + . 
near 5 = x, so that ur is bounded at 5 = x, in fact 

ur(x,O = - ld S 2(x-Q+ . ..there. 
0 yd5 Y 3 

(16) 

The skin friction parameter T, is given by 

so that 

where 

IO(X) = s XS(t)dt, A =;& ; 47312 xlo(t)1/2& 

0 0 s 0 

and 

B = 
[ 

WY(O) y’(0) + - 
210 I 2_ l,ZI_ I,2 

0 

The highest terms neglected are O(c3) and O(E-~~~). 
(18) generates the first two terms in the outer region. 
The terms neglected do not appear in these terms. 
In the special case of constant blowing and a body with 
a rounded lower end, for which y = 1 and S(0) = 0, we 
must use 

i a 
+--(u:+2u&)+... . 

1 

i = ~o-(2-r’2~,-1’2+A~-2)5-2-1~21;3/253/12+.... 
&hag 5=X (19) 



242 J. H. MERKIN 

Inverting (18) and (19) gives 

$ = -2”21,“2(&-<) 

x 1 + 2- 3’21$2 

{ L 
T31;‘(o) + ~~](lO-r)+...} 

Y(0) 

fC2 
2A1, 
y(oj(io-i)+... (20) 

and 

terms. So the inner boundary conditions are 

*o - 2”21;‘2Z, B. + 1 

4 = -2’/2#‘lz(~0-[) 

-[ 

1 _ (L-U2 +_ ,, 
6 ’ I 

+ 2A’“(co-i) + (21) 
E 

Theouter region is centred round the “dividing stream- 

line” y = eiO(x), and in it viscous effects are important. 
This suggests putting z = y -E[~(x), then equations (1) 
and (2) become 

8$ + es(x) + d2 a$$ - a; 2 = 0 (22) 

1 a% ae atj ae a$ 
aazZ+-_-_-=O. 

a~ ax ax az (23) 

The outer boundary conditions are 

ati 
Q+O, -+O as z-+co. 

aZ 
The inner boundary conditions are obtained by 

insisting that the solution at the outer edge of the 
inner layer must merge with the solution at the inner 
edge of the outer layer. In terms of outer variables (20) 
and (21) become 

$ = 2WIo”ZZ _ f 
[ 
3y’(O) + SY 1 

x Y+z2+O(c-2) (24) 

1 * = 2’/21,“5 - E’ El/2 lo"z 

x 

[ 

l+6A(“rrlz + - . . ]z3+o(E3) (25) 

(24) and (25) suggests an expansion in the form 

lj = $o+E-=$r+... 

Q= Oo+&-zei+... 
(26) 

where GL = 1 in general, but CL = 2 in the special case. 
The inner boundary conditions for the outer region are 
applied on z = -&co(x), but since we are looking for 
a solution for large E, the inner boundary conditions 
can be applied as z -+ -co provided that the inner 
solution is approached through exponentially small 

$1 - ?+ 
[ 
V(O) + y z2, 8, -0 (27) 

0 I 

OI 

ass-+ -cc 

The first order equations are the same as (22) and 
(23) with $ and 0 replaced by tie and Bo. The resulting 
equations have to be solved numerically. This has been 

done for the case of a circular cylinder with constant 

blowing, where IO = 1 - cos x. Values of B. and L:tio/& 
are given in Table 3 for various x and 4 = 1. There is 

no problem, in theory, in proceeding to obtain the 
next order solution, but since the first order solution 
is given numerically the process involves a long compu- 

tation and has not been carried out. 

To check that the outer solution approaches the 

inner boundary conditions through exponentially small 
terms, put tie = 2”21~~2z+go and U. = 1 t-h,, where 
go and ho are small. Putting these in the equations for 
Ij/o and Oo, neglecting all but the lowest order terms, 
and solving the resulting linear equations, gives, for 
0= 1, 

s ‘lo --t 

hoho) = Ao 
-x 

bdt- AoG 
VO 

for large ‘lo where 

qo = z2/dW, 

and 

d(x) = 23’21,- 1 
s 

x$/2(r) dt, 

0 

and 

agO 
z = 1$22- l’%o(~o) 

for values of k > 0. U(k +i,&, ;rlo) is the confluent 
hypergeometric function not exponentially large at 
infinity as given in [7]. 

To discuss the behaviour of the similarity solution 
for large E put F= EC#I and [ = ~-‘rl,, then using 
u = d4/dc as a new dependent variable and C$ as a new 

independent variable, the expansion for u(4) is 

where 
n(6) = uo(&+E2u1($)+“~ 

llg = /J- W[I -(l _$)2/J]W (28) 

(2p-1)(1-~$)~/’ 

s 

‘I’ 

U1 = - [l-(l-f$)2fl]1’2 

(l-~~“)“~ds (29) 

,+$ ,y3 
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Table 3. Values of B,, and c?$,,/& for asymptotic solution for strong blowing in the case of a 
horizontal circular cylinder 

(a) Values of O0 

z x=05 x= 1.0 x= 1.5 x = 2.0 x = 2.5 X = 3.0 

-5 1.000 1 .oOO 1GlO 
-3 0.999 0.999 0.998 
-2 0.984 0.982 0.979 
-1 0.888 0.884 0.877 

0 0631 0637 @638 
1 0337 0.344 0.355 
2 0,139 0.146 0.159 
3 0.049 0054 0.062 
5 0.005 DO06 0.008 
8 0000 0.000 0~000 

11 0.000 OGOO OX00 

1GOO 1GOO 1GOCl 
0997 0.995 0.990 
0.973 0.964 0.951 
0.867 0.854 0,838 
a639 0640 0.643 
0.372 0.394 0.421 
0.178 0.205 0242 
0.075 0.096 0.128 
0.011 0.018 0.032 
OGOl 0.001 oQO4 
OGOO ONlO OGOO 

(b) Values of a$,& 

z x = 0.5 x= 1.0 x= 1.5 x = 2.0 x = 2.5 x = 3.0 

-5 
-3 
-2 
-1 

0 

2 
3 
5 
8 

11 

0,495 0.959 
0.494 0.958 
0.490 0.949 
@462 0.893 
0.377 0.729 
D248 0.486 
0134 0.268 
0.062 0.128 
0.010 0.023 
0001 O+Xll 
OGOO OGlO 

1.363 1.683 1.898 1.995 
1.362 1.680 1.893 1.984 
1.347 1.657 1,858 1.936 
1,263 1.547 1.726 1,788 
1.036 1.275 1.433 1.497 
0.703 0.888 1.027 1.110 
@400 0.527 D642 0735 
0.199 0.277 0.361 0445 
0.039 0.062 0.094 0.138 
tMO2 0.005 0.010 0.019 
ON@ OGOO @OOl 0.002 

(17) gives, on using the forms for S(x) and y(x) necessary To get a solution in the outer region put z = vi -& 
for a similarity solution, then the equations in the outer region are the same as 

(4) and (5) except that differentiation is now with respect 

r:,= 1-&-4(2/?-l)+ . . . . (30) to z. In terms of outer region variables (32) gives 

Values oft: for the case p = 1 are given in Fig. 2. There 
F= E+B-1/2Z+E-28,2,21(+1B-(Z~+1)‘2 

is good agreement with the exact values, the difference 2(28+ 1) 

being less than 10 per cent at E = 1.4. + . . . (33) 
On the “dividing streamline” C#J = 1, and if this is 1 

given by < = [,, then which suggests an expansion in the form 

~~-~=p (l-4)$ 
[ 

(I-dP+’ a-s 

2W3+ I) 1 
x ;(l-&‘fl-‘+ . . . . (31) 

The inner boundary conditions are 

e. -+ 1 Fc N /3-“2z 

Inverting (31) gives er -+ 0 

qb = 1 -/r”2([o-g + B- o/1+ 1)/Z 
2(2/3+1) (io-i)2”+’ 

+ E-2P’-” -2-([,,-[)2~-1+ . . . . 

x [1+83’2@)+ . ..I 

(32) 
as z-+ --co. 
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Solution of the first order equations for /I = 3 have it can be shown, by a method similar to that given 

already been given in [3]. The values of F& 00, F; and above, that each term approaches the inner conditions 

0, for p = 1 and D = 1 are given in Table 4. Again through exponentially small terms. 

Table 4. Values of F& UO, F; and ()i for ,0 = 1 

- 50 1~0000 1 .oOOo - 13QO00 OQOOO 2. 
- 0.30 09995 09991 - 50050 - oQO70 
- 2.0 0.9913 0.9841 - 2.5340 - 0.0409 3. 
- I.5 0.9735 0,953 1 - I.6806 -0.0641 
- I.0 0.9343 0.8882 - 1.0569 -0.0729 4. 
-0.5 08642 0.7804 -0.6228 -0.0561 

0.0 0.7614 0.6366 -0.3333 -00202 5. 
0.5 0.6347 0.4795 -0.1491 0.0156 
1.0 0.5006 0.3351 - 0.0404 0.037 1 
1.5 0.3751 0.2197 0.0165 0.0424 6. 
2.0 0.2689 0.1370 0.040 1 0.0374 
3.0 0.1246 0.0482 0.0402 00200 7. 
5.0 0.0206 00050 0.0122 0.0032 
7.0 0.0028 0~0005 0.0023 0.0004 8. 
9.0 0.0004 0.000 1 oQOo4 00Jo 1 

1 I.0 0~0000 0~0000 00000 oQoOo 
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LES EFFETS DU SOUFFLAGE ET DE L’ASPIRATION 
SUR LES COUCHES LIMITES DE CONVECTION NATURELLE 

Rbumk-On considere les effets du soufflage et de I’aspiration sur la couche limite de convection 
naturelle amour de corps de forme quelconque. Une solution numtrique est obtenue pour un cylindre 
circulaire horizontal avec un soufflage ou une aspiration constante. On donne la solution de similitude 
des equations de la couche limite pour des formes particuliires d’obstacle et des vitesses de transpiration 
compatibles. On obtient les solutions asymptotiques pour un soufflage fort ou une aspiration importante 

et on trouve un bon accord avec les solutions numeriques. 

GRENZSCHICHTBEEINFLUSSUNG BEI FREIER KONVEKTION 
DURCH AUSBLASEN UND ABSAUGEN 

Zusammenfassung-Es werden die Einfltisse von Ausblasen und Absaugen auf die Grenzschichten von 
Ktirpern allgemeiner Form bei freier Konvektion behandelt. Fur den horizontalen Kreiszylinder wird 
eine numerische Losung fur konstantes Ausblasen und Absaugen erhalten. Die besondern Korperformen 
und Blasgeschwindigkeiten, welche das Auffinden einer bihnlichkeitsliisung ermoglichen, werden 
angegeben. Die asymptotischen Liisungen fur sowohl starkes Ausblasen als such Absaugen werden 

abgeleitet und eine gute Ubereinstimmung mit den numerischen Losungen festgestellt. 

B,‘IMFIHME BflS’BA M OTCOCA HA IIOrPAHMYHbIE CJIOM IIPM 
ECTECTBEHHOR KOHBEKUMM 

AHHoTauw - hcCslaTpWBaeTCS4 BnHflHHe BLlyBa H OTCOCa Ha IlOrpaHWlHbIe CnOR TeJl IIpOki3BOnbHOfi 

(t)opw "PM eCTeCTBeHHOfi KOHBeKUMM. llony9eHo wcneHHoe peueme DJIR rOp1130HTanbHOro 

KpyT.lOrOUM.lHH,3pa,lpM nOCTOflHHOh5 B~yBeMOTCOCC.~~flHeKOTOpblXf$0pMTenIiCKOpOCTe~BLlyBa 

H or-coca no.iyretibi pemenna nono6nn am ypasneurifi norpatinrnoro cnox HafineHbI acnhmrorn- 
4eCYMc PeWeHMR ,!LlsI MHTeHCHBHOrO BI,yBa M OTCOCB, XOpOIUO COrnaCyIOIIWeCfl C YACJleHHblMIl 

pe3ynbTaTahwi. 


