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Abstract—The effects of blowing and suction on free convection boundary layers on bodies of general

shape are considered. A numerical solution is obtained for a horizontal circular cylinder with both

constant blowing and suction. The particular body shapes and transpiration velocities which enable a

similarity solution of the boundary-layer equations to be found are given. The asymptotic solutions

both strong blowing and suction are derived and it is found that there is good agreement with the
numerical solutions.

NOMENCLATURE

co-ordinate measuring distance along body;
co-ordinate measuring distance normal to
body;

Vs, transpiration velocity;

I, typical length scale of the body;

e

g, acceleration of gravity;

T, temperature of fluid;

To,  ambient temperature;

Ti, temperature of body;

AT, =T-T,;

o, angle made by outward normal with
downward vertical;

S(x), =sina;

y(x), non-dimensional variation in transpiration
velocity;

v, kinematic viscosity;

¥, stream function;

€, transpiration parameter;

o, Prandtl number;

,Q", heat-transfer parameters;
T, T, SKin friction parameters;

Gr,  Grashof number;
B, coefficient of thermal expansion.

1. INTRODUCTION

Previous work on the effects of suction and blowing
on free convection boundary layers has been confined
almost entirely to the case of a heated vertical plate.
Eichhorn [1] considered the power law variations in
plate temperature and transpiration velocity which
enable a similarity solution of the boundary-layer
equations to be found. Sparrow and Cess [2] discussed
the case of constant plate temperature and transpira-
tion velocity. They obtained series expansions for

temperature and velocity in powers of x'/, x being the
co-ordinate measuring distance from the leading edge.
Merkin [3] extended this problem by obtaining
asymptotic expansions, i.e. as x — oo, for temperature
and velocity in the cases both of blowing and suction.
The series expansions for small x given in [2] were
then joined to the asymptotic solution by a numerical
solution of the boundary-layer equations.

In a recent paper, Clarke [4] extended the problem
discussed in [1] by obtaining the next approximation
to the solution of the full Navier—Stokes equations for
large, but finite, Grashof number. In [4] the density
variations were included in full, whereas in [1-3] the
density variations were assumed important only in
producing the buoyancy force.

The only paper not limiting attention to a flat plate
is by Aroesty and Cole [S]. They considered the case of
strong blowing through a body of general shape, and
obtained the first approximation in the inner inviscid
region, but did not extend it any further, or discuss
the form of the outer region which is needed so that
the ambient conditions can be attained by the fluid.

The purpose of this paper is to consider the effects
that blowing and suction have on free convection
boundary layers on bodies of general shape. A general
transpiration velocity is considered and attention is
limited to two-dimensional flows. The forms of body
shape and transpiration velocity which enable a
similarity solution of the equations to be obtained is
discussed. A method of solving the full boundary-layer
equations numerically is considered and resuits given
for a horizontal circular cylinder with constant trans-
piration velocity. Solutions are then obtained for large
values of a transpiration parameter ¢. For the case
of suction, series expansions for velocity and tempera-
ture are obtained in powers of ¢~ *, while for blowing
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the expansions are in powers of ¢ 2. A comparison of
the exact values obtained from the numerical solution
with those obtained from the asymptotic series gives
good agreement even for moderate values of & This
suggests that the asymptotic series would be useful to
describe the flow in cases other than those for which
numerical solutions have been obtained.

2. EQUATIONS OF MOTION

The co-ordinate system used is such that X measures
distance along the surface of the body, the lowest point
being the origin X =0, and Y measures distance
normally outwards. With the assumption that imposed
temperature differences are small, viscous dissipation
can be neglected and changes in density are important
only in producing the buoyancy force. The boundary-
layer equations are as given in, for example, [3] except
that the transverse component of the buoyancy force is
gP(T—Ty)sina, where « is the angle made by the
outward normal with the downward vertical. The trans-
piration velocity on the body is + V;y(x), where the
upper sign is taken throughout for blowing and the
lower sign for suction, and y(x) is non-dimensional.

The continuity equation enables a stream function ¥
to be used and defining non-dimensional variables
x=X/Ly=Gr'"*Y/L¥Y = vGr''*y(x,y)and T—T, =
AT6(x, y), where [ is a typical length scale of the body
and Gr=gpATI/v? is the Grashof number, the
boundary-layer equations become

3y op Y Y

L4 S + - — L =0 1

ay? ) dx éy? By dxdy @
10%0 oy od oy oo
W\Z_JA_FJ&G;:O )
6Cy* dydx  Ox 3y

with boundary conditions
Oy oy
0=1, =0, - =7 =

2 . Fey(x) on y=0 )

0
0--0, l-—»() as y--» 0.
dy

& = Re/Gr'/*, where Re = V,l/vis the Reynolds number
of the applied transpiration flow, and ¢ is the Prandtl
number.

IfS(x) = [(2— B)x]*#~ Y2~ then it has been shown
by [8] that equations (1) and (2) have a similarity
solution without transpiration, where § must be in the
range # < f < 2. If transpiration effects are included a
similarity solution is still possible provided y(x) =
[(2— B)x]¥~ 12~ », Defining

Y= Fefpx)dx+[2—px]V*"PF(ny), 6= 0(ny)
where

By =" v/g)'\.](/:--mzv/;)q
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equations (1) and (2) become
F"+0+(FFe)F"—pF*=0 )
" +o(FFe) =0 {5)

with
FO)=F(0)=0, 60)=1

6
F'-0, 8--0 as ©)

0y -> 0.
(Dashes denote differentiation with respect to 1,.)

The case = 1 gives the only body shape for which a
similarity solution is possible with a constant transpira-
tion velocity. In this case S(x) = x and F(y,) and 8(x,)
are the initial profiles for the constant transpiration
flow on a general body with a rounded lower end. The
semi-infinite flat plate is given by = %, and the solution
of the equations in this case have been given by [1] and
[4]. Graphs of Q"= —¢"'6(0) and 7, = ¢F"(0) for
f=1and ¢ =1 are given in Figs. 1 and 2 for suction
and blowing respectively.
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Equations (1) and (2) have been solved numerically
for a constant transpiration velocity for a horizontal
circular cylinder, in which case S(x)=sinx. The
method of solution is similar to that described in [3]
for a flat plate. In [3] the equations were first trans-
formed using a transformation appropriate for a body
with a sharp leading edge, and then these equations
were solved numerically. This transformation is not
suitable for a body with a rounded lower end, for which
S(x)/x-~» 1 as x -» 0. The transformation appropriate in
this case is

*x

Y= TFe O)f(t)dt+-’<l//1(x,y),

and then the resulting equations are solved for y/; and 6.
To do this, derivatives in the x-direction are replaced
by differences and all other quantities averaged. The
two non-linear ordinary differential equations which
result are solved by writing them in finite difference
form and solving the algebraic equations iteratively
by a Newtonian-Raphson process. The numerical
solution starts at x = 0 where the initial profiles are
given by equations (4) and (5) with § = 1 and proceeds
round the cylinder to x = n. Errors from using finite
differences in the x-direction were kept small by cover-

ing each step in first one and then two integrations
and insisting that the difference between the two solu-
tions was less than 0-0005. Errors from using finite
differences in the y-direction were reduced by doing
each calculation twice, first with a step length of h and
then with a step length of 2h. Since the finite difference
scheme gives errors of O(h?), the Richardson h? extra-
polation was used to improve the results. This method
is fully described in [6]. For suction h = 01 and for
blowing h = 0-2 were used. The outer boundary condi-
tions were taken at a finite value of y =y, and y,
had to be varied from 7 to 10 for suction, and from 20
to 28 for blowing.

We can define a skin friction parameter t, and a
heat-transfer parameter Q by

2 (62\1’ :S(azw
To = gBAT\OY? )0 67")0

_ v (67" _ l(ﬁﬂ
Q== AT a_Y)o e E)o

Values of 1, and Q for suction and blowing for
various values of ¢ and ¢ = 1 are given in Tables 1
and 2.

and

Table 1. Values of skin friction parameter 7., and heat-transfer parameter Q for suction

=03 e=1 =2 & = 2 (series)

x 0 To 0 7, 0 7, 0

0 0 1-4606 0 1-1160 0 1-0169 0 1-0136
0-5 0-1928 1-4502 0-3416 1-1107 0-4567 1-0158 04571 1-0126
1-0 0-3542 1-4184 0-6233 1-0957 0-8094 1-0119 0-8114 1-0093
1-5 0-4566 1-3640 0-7934 1-0700 0-9863 1-0060 0-9850 1-0031
20 0-4801 1-2838 0-8146 1-0320 09219 0-9985 0-9288 0-9948
25 04122 1-1689 0-6658 09764 0-6393 09872 06318 09869
30 0-2418 09838 0-3280 08758 01526 09852 01517 0-9826
n 01619 0-8955 0-1810 0-8100 0-0000 0-9849 0-0000 0-9823

Table 2. Values of skin friction parameter 7., and heat-transfer parameter Q for blowing

£=2 £ = 2 (scries)

x 0 T 0 7, 0 7,

0 0 0-4602 0 0-0769 0 00018 0
05 0-1880 04004 0-3314 0-0749 0-4547 0-0017 04531

1-0 0-3435 0-3799 0-5999 0-0691 0-8078 00014 0-8131

15 04379 0-3458 07517 0-0598 09766 0-0010 09931
20 04509 02997 0-7496 00471 09145 0-0006 09329
2:5 03707 0:2340 0-5765 00318 06223 0-0002 0-6284
30 01875 01461 0-2443 0-0146 0-1526 0-0001 0-1499

n 01380 01253 0-0882 0-0075 0-0000 0-0000 0-0000
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3. ASYMPTOTIC EXPANSION-—-SUCTION
To obtain a solution of equations (1) and (2) which
will hold for large ¢, new variables are defined by

= EJ'\‘y(t)dt+S})3s3_f'(x, n) 6=0(x,n)
1]

where = ¢yy. On substituting into equations (1) and
(2) an expansion for fand 6 of the form

S = foln)
+£‘4< deflo n) + L:Sfu(ﬂ)) ™
0(x, 1) = Bo(n)

Sd
+8_4< degl()(r])+ 4d 611(’7))

is suggested. On solving the resulting ordinary differen-
tial equations

Boln) = e "
(c—1)+e ""—ge™ "
- - 1
Joln) = ey , (@#1)
or l—e i—pe™ (oc=1)
3. 202+26+1>
O1oln) = =e "”( e
tol) c d 20(c+1)
e 6, e
n_T 1
(0—1)(a+1e 20'2) D
=3 M—D+3e PG+ (6=1)
O11(n) = _%010(’1)
_ B 3;/’ - o 3(5+4U—20'2)
Jioln) = p= i Gt R 7 (c+1)(c—1)
5 4 3
N (e"’”+o—1)+(3g —3¢*+30*—0*—a+3)
o*o~ 1o +1)°
_ e >+
(1+a)y _ T
x (e +o) 46%(g —1)?
(3o-1) ~2a
S L 7 A Ny 20 —1
80“(20—1)(0—1)2(6 200
_ (206" +1070° —80* — 470 +12) _
Lo 1)
40%(o—D(o+ D 2o—1)
_4 21
T3 <4+ T 11+3112> e "
17 5 n2> s,
+(16 g5 )e™ (=1
262 —4¢6-5 _ -
_.—_1—-__ —2an__ - —_—
+80“(a—1)(20—1)( 20e" "+ 20— 1)
4, 3
(0' +0 1) (e—(1+a)n_(1+a.)e—n+o-)

T oo+ 1)Ho—1)
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ne~1—e")
aoc-1) (0#1)

7 13
= <r[2 +I'7+ T)e_"

_(n, 13\ -2 _ 39
(8+16)e 16

From the above solution it follows that asymptotic
series for Q and t,, are

e (/1dS 35dy
Q‘V[”za(aﬂ)(y‘*fx Fd§>+“] ®

o=y le T 4o+ 1)

(c=1).

x ((25¢;+19)v§5dy (9”+7)ds>+ ]

y CE - }'4 a (9)

The solution for the equations of O~ %) has been
found in a way similar to that above, but this time
four sets of equations have to be solved. The process
is straightforward but the algebraic manipulation is
very involved. The results are very long and will not
be given in order to save space.
Using the forms for S(x) and
similarity solution, it follows that

y(x) necessary for a

4

Q=0+ ern " (10)

4206+ D)+(T76+95)
4o¥ o+ 1)*

*
«

o=1os (11)

g
Values of Q and t, obtained from (8) and (9) for a
circular cylinder are given in Table 1 for ¢ =2 and
o =1, and there is good agreement with the exact
values found from the numerical solution. This good
agreement was also seen in a comparison of velocity and
temperature profiles.

Values of Q* and 7}, obtained from (10} and (11) for
B =1and o = 1 are plotted on Fig. 1. The series solu-
tion differs from the exact value by less than 10 per cent
when ¢ = 1 for Q" and when ¢ = 1-5 for 7},

It seems reasonable to conclude that the series
expansions will be useful in giving a good approxima-
tion to velocity and temperature profiles for a general
body shape and suction velocity for ¢ > 2.

4. ASYMPTOTIC EXPANSION--BLOWING

For strong blowing the boundary layer is made up of
two regions. There is an inner region of thickness O(g)
in which viscous effects are negligible, made up of fluid
that has been blown out through the body. This region
extends from the body up to the “dividing streamline”
which is the streamline that emerged from the body at

x = 0. Since the ambient conditions are not attained by
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the fluid on the “dividing streamline”, there must be an
outer region, centred round the “dividing streamline”
at the outer edge of which the ambient conditions are
attained, and which must merge with the inner solution.
This outer region has thickness O(1) and in it viscous
effects are important.

To obtain the solution in the inner region, equations
(1) and (2) are first transformed by putting y = e¢ and
{ =&~ 'y. This transformation is suggested by the fact
that the inner region has thickness O(e) and is inviscid
to a first approximation. Then, instead of (¢,0), (u, 0)
are used as new dependent variables, where u = 0¢/8(,
and instead of (x, (), (x, &) are used as new independent
variables. £ is defined to be the point on the body where
the streamline ¢ = constant emerged. ¢ is related to ¢
byd¢ = —y(£)d¢. & = xisthe equation of the body and
the equation of the “dividing streamline” is & = 0.

The form of the transformed equations suggests an
expansion of the form

u = ug(x, &) +e 2uy(x, &)+ *uy(x, &)+ ...
0 = O(x, &) +e720,(x, &)+ e *0,(x,E) + ...
The equation for 8, is 06,/0x = 0, and since 6, = 1 on
the body 0,(x, ) = 1. Equating terms of O(s™2) gives
00,/0x = 0, and since 6, = 0 on the body 6(x,&) = 0.
Proceeding inductively, it is easy to see that 8,(x, &) = 0
for n = 1. So that in the inner layer we have
B(x, &) = 1.

The solution for ug is

x 1/2
Uglx, &) = 212 <f S(t)dt>

which agrees with the result given in [5]. The solution
of the equation obtained by equating terms of O(¢~2?) is

__ L drse)
u(x, &) = (&) dE [y(é)] Uo(x, <)

From (14) it follows that ug = 2 28(x)(x —&)V2+ ...
near ¢ = x, so that u, is bounded at £ = x, in fact

(12)

(13)

(14)

f Cut,&dr. (15)
$

e,g) = — L 8 <S>§(x—§)+...there. (16)

yde\y
The skin friction parameter 7, is given by

e
¢ P(&) 0 )=y
so that

o ;[‘lh
°T Tyt %

2 O(uouy)
e 0F
10

+3 &(uf +2uply) + .. .:L
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From (16) it follows that the term of O(¢~2) does not
contribute to 7, so to get the next approximation the
term of O(¢~*) has to be considered. It follows that

s d
_uoysaf

_S[,_¢&*dy(s
t‘“_y|:1 y(x)dx<y>+”'J'

Values of 7, obtained from (17) for the case of a circular
cylinder with constant blowing are given in Table 2 for
& = 2. There is good agreement with the exact values,
the difference being less than 3 per cent.

{ is related to the (x, ¢) variables by

uy(x, &) = (g)(x—é)+...nearé=x

so that

(17)

_ 70
(= . u————(x’ ) de.

The inner solution holds in the region between the body
and the “dividing streamline” which is given by & = 0.
If { = {o(x)is the equation of the “dividing streamline”

then
Lolx) = J 0 g,

0 u(x7 t)

Since the solution in the outer region must merge with
the inner region solution near the “dividing streamline”
we need to know the behaviour of ¢ near ¢ = 0. From
(12) and using the behaviour of u, and u, for small &

0 A
c=¢o—[23+1;,5+8—2}5-352+... (18)

where

* _1d s\ 5,7 12
Iy(x) = J; S@ydt, A= 3 dx <;> Iy J;) ()= dt

and

B= I:,yr(o) + S(O)y(o)]z— 1/210— 1/2.

The highest terms neglected are O(¢3) and O(e ™~ 2£2).
(18) generates the first two terms in the outer region.
The terms neglected do not appear in these terms.
In the special case of constant blowing and a body with
arounded lower end, for which y = 1 and S(0) = 0, we
must use

{=00—Q7Ig2+ Ae™HE—27 123283 /104
(19
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Inverting (18) and (19) gives
¢ = =212 -))

~-1/271/2 0
o] B0 e ]

241
e 2 (=04
y0) °

(20)
and

b= —2L(C-0) [1 Gl }

+ M_I()

o=+ .... 1)
The outer region is centred round the “dividing stream-
line” y = &{4(x), and in it viscous effects are important.
This suggests putting z = y—e&{,(x), then equations (1)
and (2) become

3 2
OV | o5y + B Y

W _o @

oz° Ox 0z 0z 0x0z
1820 0oy 00 oy
—_t—— = —=0(. 2
o 0z° +6z Ox 0x 0z 0 @3)

The outer boundary conditions are

60— 0, ?—»0 as 7~ o0.

zZ
The inner boundary conditions are obtained by
insisting that the solution at the outer edge of the
inner layer must merge with the solution at the inner
edge of the outer layer. In terms of outer variables (20)
and (21) become

1 0)y(0
Ip = 21/21(;/22 — ; |:3'))’(0) + S( 2:( )]
IO -2
x g0 04

1 I3?
— o2z, _ 1a1270
W 4 &2 _6

1/2
21"1 +...:Iz3+0(£_3) 25)

z

X [l+6A(

(24) and (25) suggests an expansion in the form

W =yYo+e Y+

2
9:60+8_101+... (6)

where o = 1 in general, but « = 2 in the special case.
The inner boundary conditions for the outer region are
applied on z = —¢{y(x), but since we are looking for
a solution for large ¢, the inner boundary conditions
can be applied as z— —oo provided that the inner
solution is approached through exponentially small

terms. So the inner boundary conditions are
Yo ~ 2212z, 6,1

SOp©)

0

1/2 1/2
%.p, ~ 212 IOTH [1 +64 (2122 + }}

as z— —aoo.

vy J"—[sv'(on }2 6,50 @7

75072
or

The first order equations are the same as (22) and
(23) with  and 8 replaced by sy and 6,. The resulting
equations have to be solved numerically. This has been
done for the case of a circular cylinder with constant
blowing, where I, = 1 —cos x. Values of 8, and dyo/6z
are given in Table 3 for various x and ¢ = 1. There is
no problem, in theory, in proceeding to obtain the
next order solution, but since the first order solution
is given numerically the process involves a long compu-
tation and has not been carried out.

To check that the outer solution approaches the
inner boundary conditions through exponentially small
terms, put Yo = 242132z +g, and 8y = 1+ h,, where
go and h, are small. Putting these in the equations for
o and 0,, neglecting all but the lowest order terms,
and solving the resulting linear equations, gives, for
=1,

no e"t e"lo

holne) = Ao j_w [—1/—2d1 ~ A, W
for large no where
o = z%/d(x),
and

d{x) = 2325 ! f I} (n)dt,
0

and
g0

Fre 13227 Y2ho(no)

+Bo2 V2 V2 (L dYe ™ Uk +3, %, 1)

for values of k> 0. Utk+4,4,n0) is the confluent
hypergeometric function not exponentially large at
infinity as given in [7].

To discuss the behaviour of the similarity solution
for large ¢ put F=e¢ and {=¢ !5, then using
u = d¢/d{ as a new dependent variable and ¢ as a new
independent variable, the expansion for u(¢) is

u(@) = uo(dp)+&*us () +. ..

where
MO:B—I/Z[I_(1_¢)2/J]1,'Z (28)
281 (1—)?F (7 (1—s212ds
U= — Elli(l )_(¢)2;§)1/2 J1—(,'v( Sss) a (29)
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Table 3. Values of 6, and dy,/éz for asymptotic solution for strong blowing in the case of a
horizontal circular cylinder

(a) Values of 8,

z x =05 x=10 x=15 x =20 x =25 x =30
-5 1-000 1-000 1-000 1-000 1-000 1-000
-3 0999 0999 0-998 0997 0995 0990
-2 0-984 0982 0979 0973 0964 0951
-1 0-888 0-884 0-877 0-867 0-854 0-838

0 0637 0637 0638 0639 0-640 0-643
1 0337 0344 0-355 0372 0-394 0421
2 0139 0-146 0159 0178 0-205 0242
3 0-049 0-054 0-062 0-075 0-096 0-128
5 0-005 0006 0-008 0011 0-018 0032
8 0-000 0-000 0-000 0001 0-001 0-004

11 0-000 0-000 0-000 0-000 0-000 0-000

(b) Values of dyyo/éz

z x=05 x=10 x=135 x =20 x =25 x =30
-5 0-495 0959 1-363 1-683 1-898 1995
-3 0-494 0-958 1:362 1-680 1-893 1-984
-2 0490 0949 1-347 1-657 1-858 1-936
-1 0462 0-893 1-263 1-547 1726 1-788

0 0-377 0729 1-036 1275 1-433 1-497
1 0-248 0-486 0-703 0-888 1-:027 1-110
2 0-134 0-268 0400 0-527 0-642 0735
3 0-062 0128 0-199 0277 0-361 0-445
S 0010 0-023 0-039 0-062 0094 0138
8 0-001 0-001 0-002 0-005 0010 0019

11 0-000 0-000 0-000 0-000 0001 0-002

(17) gives, on using the forms for S(x) and y(x) necessary
for a similarity solution,
T,=1—e"*2p-1)+.... (30)
Values of 7, for the case § = 1 are given in Fig, 2. There
is good agreement with the exact values, the difference
being less than 10 per cent at ¢ = 1-4.
On the “dividing streamline” ¢ = 1, and if this is
given by { = {, then
1 _ ¢)2/J+ 1 B
Ca—C = BY2| (1 —¢) + (_____ 2
fo—(=8 I:( ?) 208+ 1) £

Ba—gpie . o
Inverting (31) gives
p=1-B"12¢ _u)+w e
T T RS TR
+¢? B(C _C)zu-1+ 32)
2 0

To get a solution in the outer region put z = 1, —&l,
then the equations in the outer region are the same as
(4)and (5)except that differentiation is now with respect
to z. In terms of outer region variables (32) gives

ﬂ—(2ﬂ+ /2
F=¢+p Pz W2t ______
228+1)

g2es+
x[1+52
)

+ } (33)

which suggests an expansion in the form

F =g+ Fo(z)+e 2*F(2)+ ...
0 =00(2)+e *0,(2)+ ....

The inner boundary conditions are
90 -1 Fo~ﬂ-1/22

ﬁ—(Z[H- 1)/2
91 ‘-'0 Fl ~—
226+1)

[rere(2).]

lz|2ﬁ+1

as z--» — 0.
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Solution of the first order equations for § =% have
already been given in [3]. The values of Fy, 0, F; and

J. H. MERKIN

0, for f=1 and o = | are given in Table 4. Again through exponentially small terms.

it can be shown, by a method similar to that given
above, that each term approaches the inner conditions

Table 4. Values of Fy, 6, F{ and 0, for f =1
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LES EFFETS DU SOUFFLAGE ET DE L’ASPIRATION
SUR LES COUCHES LIMITES DE CONVECTION NATURELLE

Résumé—On considére les effets du soufflage et de Paspiration sur la couche limite de convection

naturelle autour de corps de forme quelconque. Une solution numérique est obtenue pour un cylindre

circulaire horizontal avec un soufflage ou une aspiration constante. On donne la solution de similitude

des équations de la couche limite pour des formes particuliéres d’obstacle et des vitesses de transpiration

compatibles. On obtient les solutions asymptotiques pour un soufflage fort ou une aspiration importante
et on trouve un bon accord avec les solutions numériques.

GRENZSCHICHTBEEINFLUSSUNG BEI FREIER KONVEKTION
DURCH AUSBLASEN UND ABSAUGEN

Zusammenfassung—Es werden die Einfliisse von Ausblasen und Absaugen auf die Grenzschichten von
Korpern allgemeiner Form bei freier Konvektion behandelt. Fir den horizontalen Kreiszylinder wird
eine numerische Losung fiir konstantes Ausblasen und Absaugen erhalten. Die besondern Korperformen
und Blasgeschwindigkeiten, welche das Auffinden einer Ahnlichkeitsldsung erméglichen, werden
angegeben. Die asymptotischen Losungen fiir sowohl starkes Ausblasen als auch Absaugen werden
abgeleitet und eine gute Ubereinstimmung mit den numerischen Losungen festgestellt.

BAWAHUE BAYBA U OTCOCA HA TIOT PAHMYHBLIE CJION I1PU
ECTECTBEHHOM KOHBEKLWU

Annotauust — PaccMaTpuBaeTcs BiMAHHE BAYBA M OTCOCA HA MOrPaHUYHbIE CJION TeJ MPOH3BOIBHOMR

(Op bl IPH €CTECTBEHHOM KOHBekUHW. [lOoNy4eHO UMC/IGHHOE pEILEHHE 17151 TOPH3OHTANIbHOIO

KPYr10r0 UMIIHHAPA NPH NOCTOAHHOM BAYyBe M 0Tcoce. Ui HEKOTOPbIX GOPM Tesu ckopocTeil BayBa

M OTCOCa MOIyYeHbl PelueHUs Noaodus AN ypaBHeHHH morpannyHoro cios. HalieHbl acuMNTOTH-

YECKHE PELUEHHUA 118 MHTEHCHBHOTO BAyBa M OTCOCA, XOPOWIO COIJIACYOLIMECS € YHCICHHBIMH
pe3y/ibTaTamHu.



